量子信息是量子物理與信息技術相結合發(fā)展起來的新學科,主要包括量子通信和量子計算2個領域。量子通信主要研究量子密碼、量子隱形傳態(tài)、遠距離量子通信的技術等等;量子計算主要研究量子計算機和適合于量子計算機的量子算法。
科學社會學的奠基人貝爾納曾說:“科學與戰(zhàn)爭一直是極其密切地聯(lián)系著的。”今天,倘若要追溯風靡全球的信息化戰(zhàn)爭之科技源頭的話,無疑是1946年世界第一臺計算機“ENIAC”誕生所開啟的電子信息科技革命。然而,這一曾徹底顛覆機械化戰(zhàn)爭圖景的電子信息科技,在遵循“摩爾定律”飛速前行了數(shù)十年之后,制約其進一步發(fā)展的系列問題日漸凸顯:電子計算機的極限運算速度是否存在?越來越一體化的電子信息網(wǎng)絡如何應對“網(wǎng)電空間戰(zhàn)”?等等。對此,近年來不斷突破的量子信息科技正在開啟新的機遇之門,勢必在未來重新涂抹戰(zhàn)神的面孔。
量子信息化戰(zhàn)場的通信網(wǎng)絡,以其超大信道容量、超高通信速率等特性,在未來的信息化戰(zhàn)爭中扮演無可替代的角色。亦正因此,近年來,美國國防高級研究計劃署啟動了多項量子通信方面的相關研究計劃。英國、德國、日本等國也都將量子通信技術納入議程,對其開展了廣泛的探索。
一、量子信息技術總體發(fā)展態(tài)勢
(一)量子信息技術成為未來科技發(fā)展關注焦點之一
隨著人類對于量子力學原理的認識、理解和研究不斷深入,以及對于微觀物理體系的觀測和調控能力不斷提升,以微觀粒子系統(tǒng)(如電子、光子和冷原子等)為操控對象,借助其中的量子疊加態(tài)和量子糾纏效應等獨特物理現(xiàn)象進行信息獲取、處理和傳輸?shù)牧孔有畔⒓夹g應運而生并蓬勃發(fā)展。量子信息技術主要包括量子計算、量子通信和量子測量三大領域,可以在提升運算處理速度、信息安全保障能力、測量精度和靈敏度等方面突破經(jīng)典技術的瓶頸。量子信息技術已經(jīng)成為信息通信技術演進和產(chǎn)業(yè)升級的關注焦點之一,在未來國家科技發(fā)展、新興產(chǎn)業(yè)培育、國防和經(jīng)濟建設等領域,將產(chǎn)生基礎共性乃至顛覆性重大影響。
量子計算以量子比特為基本單元,利用量子疊加和干涉等原理進行量子并行計算,具有經(jīng)典計算無法比擬的巨大信息攜帶和超強并行處理能力,能夠在特定計算困難問題上提供指數(shù)級加速。量子計算帶來的算力飛躍,有可能在未來引發(fā)改變游戲規(guī)則的計算革命,成為推動科學技術加速發(fā)展演進的“觸發(fā)器”和“催化劑”。未來可能在實現(xiàn)特定計算問題求解的專用量子計算處理器,用于分子結構和量子體系模擬的量子模擬機,以及用于機器學習和大數(shù)據(jù)集優(yōu)化等應用的量子計算新算法等方面率先取得突破。
量子通信利用量子疊加態(tài)或量子糾纏效應等進行信息或密鑰傳輸,基于量子力學原理保證傳輸安全性,主要分量子隱形傳態(tài)和量子密鑰分發(fā)兩類。量子密鑰分發(fā)基于量子力學原理保證密鑰分發(fā)的安全性,是首個從實驗室走向實際應用的量子通信技術分支。通過在經(jīng)典通信中加入量子密鑰分發(fā)和信息加密傳輸,可以提升網(wǎng)絡信息安全保障能力。量子隱形傳態(tài)在經(jīng)典通信輔助之下,可以實現(xiàn)任意未知量子態(tài)信息的傳輸。量子隱形傳態(tài)與量子計算融合形成量子信息網(wǎng)絡,是未來量子信息技術的重要發(fā)展方向之一。
量子測量基于微觀粒子系統(tǒng)及其量子態(tài)的精密測量,完成被測系統(tǒng)物理量的執(zhí)行變換和信息輸出,在測量精度、靈敏度和穩(wěn)定性等方面比傳統(tǒng)測量技術有明顯優(yōu)勢。主要包括時間基準、慣性測量、重力測量、磁場測量和目標識別等方向,廣泛應用于基礎科研、空間探測、生物醫(yī)療、慣性制導、地質勘測、災害預防等領域。量子物理常數(shù)和量子測量技術已經(jīng)成為定義基本物理量單位和計量基準的重要參考,未來量子測量有望在生物研究、醫(yī)學檢測以及面向航天、國防和商業(yè)等應用的新一代定位、導航和授時系統(tǒng)等方面率先獲得應用。
(二)各國加大量子信息領域的支持投入和布局推動
以量子計算、量子通信和量子測量為代表的量子信息技術已成為未來國家科技發(fā)展的重要領域之一,世界科技強國都對其高度重視。
近年來,歐美國家紛紛啟動了國家級量子科技戰(zhàn)略行動計劃,大幅增加研發(fā)投入,同時開展頂層規(guī)劃及研究應用布局。 英國 2015 年正式啟動“國家量子技術計劃”,投資 2.7 億英鎊建立量子通信、傳感、成像和計算四大研發(fā)中心,開展學術與應用研究2018 年 11 月進行了第二階段 2.35 億英鎊投資撥款。德國在 2018 年9 月提出“量子技術——從基礎到市場”框架計劃,擬于 2022 年前投資6.5 億歐元促進量子技術發(fā)展與應用,并可延長資助至 2028 年。
歐盟 2016 年推出為期十年,總投資額超過 10 億歐元的“量子宣言”旗艦計劃,并于 2018 年 10 月啟動首批 19 個科研類項目,2019 年 7 月歐盟 10 國簽署量子通信基礎設施(QCI)聲明,探討未來十年在歐洲范圍內(nèi)將量子技術和系統(tǒng)整合到傳統(tǒng)通信基礎設施之中,以保護智能能源網(wǎng)絡、空中交通管制、銀行和醫(yī)療保健設施等加密通信系統(tǒng)免受網(wǎng)絡安全威脅。
美國 2018 年 12 月通過《國家量子行動計劃(NQI)》立法,計劃在未來四年增加量子信息科學領域投資 12.75 億美元,以確保美國在量子技術時代的科技領導力,以及經(jīng)濟安全、信息安全和國家安全。
同期發(fā)布的《量子信息科學國家戰(zhàn)略概述》,規(guī)劃推動量子計算超大規(guī)模數(shù)據(jù)集優(yōu)化處理,量子模擬新材料設計和分子功能研究,基于量子隱形傳態(tài)的安全通信以及量子傳感與精密測量等領域的研究,同時設立 3~6 個量子創(chuàng)新實驗室(QILabs),建立全美量子科研網(wǎng)絡(QRNet),推動量子計算接入計劃(QCAP)。
我國對量子信息技術發(fā)展與應用高度重視。2018 年 5 月,習近平總書記在兩院院士大會上的講話中指出, “以人工智能、量子信息、移動通信、物聯(lián)網(wǎng)、區(qū)塊鏈為代表的新一代信息技術加速突破應用。 ”國務院發(fā)布《“十三五”國家科技創(chuàng)新規(guī)劃》,《“十三五”國家戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展規(guī)劃》和《“十三五”國家信息化規(guī)劃》等文件,指導量子信息技術研究與應用。科技部和中科院通過自然科學基金、重點研發(fā)計劃和戰(zhàn)略先導專項等項目對量子信息科研給予支持,同時論證籌備重大科技項目和國家實驗室,進一步推動基礎理論與實驗研究。發(fā)改委牽頭組織實施量子保密通信“京滬干線”技術驗證與應用示范項目,國家廣域量子保密通信骨干網(wǎng)絡建設一期工程等試點應用項目和網(wǎng)絡建設。工信部開展量子保密通信應用評估與產(chǎn)業(yè)研究,大力支持和引導量子信息技術國際與國內(nèi)標準化研究。
(三)量子信息技術標準化研究受到重視并加速發(fā)展
近年來,全球范圍內(nèi)量子信息技術領域的樣機研究、試點應用和產(chǎn)業(yè)化迅速發(fā)展,隨著量子計算、量子通信和量子測量等領域新興應用的演進,在術語定義、性能評價、系統(tǒng)模塊、接口協(xié)議、網(wǎng)絡架構和管理運維等方面的標準化需求也開始逐漸出現(xiàn)。
國際標準化組織紛紛成立量子信息技術相關研究組和標準項目并開展工作,2018 年以來相關布局與研究工作明顯提速。歐洲多國在完成 QKD 現(xiàn)網(wǎng)實驗之后,歐洲電信標準化協(xié)會(ETSI)成立ISG-QKD 標準組,已發(fā)布包括術語定義、系統(tǒng)器件、應用接口、安全證明、部署參數(shù)等 9 項技術規(guī)范,另有 3 項在研。國際標準化組織和國際電工委員會的第一聯(lián)合技術委員會(ISO/IEC JTC1)成立了有我國專家參與的量子計算研究組(SG2)和咨詢組(AG),發(fā)布量子計算研究報告和技術趨勢報告,同時在信息安全分技術委員會(SC27)立項由我國專家牽頭的 QKD 安全需求與測評方法標準項目。國際電氣和電子工程師協(xié)會(IEEE)啟動了量子技術術語定義、量子計算性能指標和軟件定義量子通信協(xié)議等 3 個研究項目。國際互聯(lián)網(wǎng)工程任務組(IETF)成立量子互聯(lián)網(wǎng)研究組(QIRG)開展量子互聯(lián)網(wǎng)路由、資源分配、連接建立、互操作和安全性等方面的初步研究。 國際電信聯(lián)盟電信標準化部門(ITU-T)對量子信息技術發(fā)展演進及其未來對信息通信網(wǎng)絡與產(chǎn)業(yè)的影響保持高度關注。未來網(wǎng)絡研究組(SG13)已開展 QKD 網(wǎng)絡的基本框架、功能架構、密鑰管理和軟件定義控制等方面研究項目,網(wǎng)絡安全研究組(SG17)則在 QKD網(wǎng)絡安全要求、密鑰管理安全要求、可信節(jié)點安全要求、加密功能要求等方面開展研究,我國部門成員和學術成員擔任部分標準編輯人并做出重要技術貢獻。此外,我國還推動在 ITU-T 成立面向網(wǎng)絡的量子信息技術研究焦點組(FG-QIT4N),全面開展量子信息技術標準化研究工作。2019 年 6 月,在上海成功舉辦了首屆 ITU 量子信息技術國際研討會,廣泛邀請全球研究機構和科技公司的專家學者,對量子計算、量子通信、量子測量、量子信息網(wǎng)絡(QIN)等議題開展交流和討論。2019 年 9 月,F(xiàn)G-QIT4N 在電信標準化顧問組(TSAG)全會期間正式成立,由中俄美專家共同擔任主席,計劃在焦點組研究期內(nèi),對 QKD 網(wǎng)絡和 QIN 等相關議題開展標準化預研,為 ITU-T 下一個研究期的量子信息技術標準研究工作奠定基礎并提出建議。 我國在量子保密通信網(wǎng)絡建設和試點應用方面具備較好的研究基礎和實踐積累,相關標準化研究工作也逐步開展。2017 年,中國
通信標準化協(xié)會(CCSA)成立量子通信與信息技術特設任務組(ST7),開展量子通信和網(wǎng)絡以及量子信息技術關鍵器件的標準研究,目前已完成 6 項研究報告,并開展量子保密通信術語定義和應用場景,QKD系統(tǒng)技術要求、測試方法和應用接口等國家標準和行業(yè)標準的制定。QKD 技術還涉及密碼的產(chǎn)生、管理和使用,中國密碼行業(yè)標準化技術委員會(CSTC)也開展了 QKD 技術規(guī)范和測評體系等密碼行業(yè)標準的研究。2019年1月,量子計算與測量標準化技術委員會(TC578)正式成立,計劃開展量子計算和量子測量領域的標準化研究工作。
(四)量子信息技術創(chuàng)新活躍,論文和專利增長迅速
1.量子計算近年來s論文和專利增長迅速
自上世紀 90 年代開始,各科技強國開始在量子技術領域加大投入,量子計算專利申請開始出現(xiàn)。近年來,量子計算領域的專利申請和授權發(fā)展態(tài)勢情況如圖 2 所示,2012 年之前全球量子計算領域專利申請數(shù)量整體保持平穩(wěn),專利申請主要來自美國和日本。
量子計算領域專利申請情況
資料來源:中國信息通信研究院
2012 年開始,隨著歐美科技巨頭開始大力投入和持續(xù)推動,以及全球各國科技企業(yè)和研究機構之間的相互競爭,更加重視量子計算領域的知識產(chǎn)權布局,專利申請數(shù)量出現(xiàn)明顯增長。美國在布局時間和申請總量上占有優(yōu)勢,近年來我國量子計算領域專利申請數(shù)量的增長趨勢更快。通過對比中、美、日、加的專利申請人的類型可以看出,我國專利更多的來自高校和科研機構,國內(nèi)科技企業(yè)多與科研院所合作,相關研究工作和知識產(chǎn)權布局大多處于起步階段。
近 20 年來全球量子計算領域研究論文發(fā)表趨勢和主要發(fā)文機構統(tǒng)計,隨著量子計算從理論走向物理實現(xiàn),全球論文發(fā)表量也保持增長態(tài)勢,特別是在 2018-19 年研究論文數(shù)量激增。從發(fā)表論文研究機構來看,近五年來排名前 20 的機構中,中國占據(jù) 3 席,分別是中國科學院、中國科學技術大學和清華大學。其中,中國科學院的發(fā)文量持續(xù)快速上升,過去一年的新增論文數(shù)量僅次于美國 MIT和荷蘭 TU Delft。美國量子計算研究重要機構多達 10 個,除了高校外,IBM、Microsoft 和 Google 等科技巨頭也有較多研究成果發(fā)表。
此外,德國 ETH Zurich、Max Planck Society、加拿大 Waterloo 大學、蒙特利爾大學、日本東京大學也是重要的創(chuàng)新主體。
量子計算領域發(fā)表論文趨勢
資料來源:中國信息通信研究院
2.量子通信領域中美兩國專利數(shù)量領先
隨著美、歐、英、日、韓等國的量子通信研發(fā)及試點應用的發(fā)展,專利作為重要的技術保護手段受到產(chǎn)學研界的重視,相關專利快速增長,量子通信領域全球專利申請和專利授權發(fā)展趨勢如圖 4 所示。
量子通信領域專利授權發(fā)展趨勢
資料來源:中國信息通信研究院
美國和日本在量子通信領域的早期專利申請量較多,但近年來,專利申請地域向中國轉移。對比專利申請和專利授權來看,由于早期中國專利申請量較少,所以目前看中國授權專利數(shù)量少于美國,但是隨著我國在量子通信基礎研究和應用探索的不斷深入,以及量子保密通信產(chǎn)業(yè)的發(fā)展,預計未來專利授權量還將繼續(xù)上升,而且也將吸引更多的外國公司來華布局專利。
2005 年之后,量子密鑰分發(fā)(QKD)技術研究從理論探索開始走向實用化,相關研究論文數(shù)量持續(xù)上升,近年 QKD 領域論文發(fā)表趨勢和主要發(fā)文機構如圖 5 所示。其中,QKD 領域 70%的研究論文在近十年發(fā)表,文獻引證數(shù)量也在不斷增加,2018 年發(fā)文量創(chuàng)新高。
中、美、加、德、新、英等國以科研機構為主,日本則主要來自企業(yè)。我國中科大、北郵、清華、中科院、上交等院校的科研論文數(shù)量排名前列。相比之下,量子隱形傳態(tài)(QT)的論文數(shù)量在 2005 年之前一直高于 QKD,但近年來論文數(shù)量保持平穩(wěn)并呈下降趨勢,與其關鍵技術瓶頸仍未取得突破有一定關系。除歐、美、日科研機構外,我國的中科大、中科院、電子科大和清華的論文發(fā)表數(shù)量也名列前茅。
3.量子測量和量子計量的專利論文增長
與量子計算和量子通信相比,量子測量和量子計量領域的專利申請和研究論文總量偏少,近年也呈現(xiàn)增長趨勢。
量子測量領域專利申請
資料來源:中國信息通信研究院
量子測量論文發(fā)表趨勢
資料來源:中國信息通信研究院
截至 2019 年 10 月公開的相關專利近千件,并且增長趨勢強勁,從專利申請地域來看,美、中、日的專利申請量較多。論文方面,與量子計量(Quantum metrology)相關的論文數(shù)量持續(xù)上升,美國加州理工學院、德國蘇黎世聯(lián)邦理工學院以及澳大利亞的高校和科研機構發(fā)表了較多的論文。我國的中科大、中科院和北航等單位在量子精密測量領域持續(xù)開展科研攻關,開始步入量子測量和量子計量研究論文發(fā)表數(shù)量的國際前沿行列。
二、量子計算領域研究與應用進展
(一)物理平臺探索發(fā)展迅速,技術路線仍未收斂
量子計算研究始于上世紀八十年代,經(jīng)歷了由科研機構主導的基礎理論探索和編碼算法研究階段,目前已進入由產(chǎn)業(yè)和學術界共同合作的工程實驗驗證和原理樣機攻關階段。量子計算包含量子處理器、量子編碼、量子算法、量子軟件、以及外圍保障和上層應用等多個環(huán)節(jié)。其中,量子處理器是制備和操控量子物理比特的平臺,量子編碼是基于眾多物理比特實現(xiàn)可容錯邏輯比特的糾錯編碼,量子算法和軟件是將計算困難問題與量子計算并行處理能力結合的映射和橋梁。目前,量子處理器的物理比特實現(xiàn)仍是量子計算研究的核心瓶頸,主要包含超導、離子阱、硅量子點、中性原子、光量子、金剛石色心和拓撲等多種方案,研究取得一定進展,但仍未實現(xiàn)技術路線收斂。
超導路線方面,Google 在 2018 年推出 72 位量子比特處理器,Rigetti 正在構建更強大的 128 量子比特處理器。我國中科大在 2019年已實現(xiàn) 24 位超導量子比特處理器,并進行多體量子系統(tǒng)模擬;同時,清華大學利用單量子比特實現(xiàn)了精度為 98.8%的量子生成對抗網(wǎng)絡,未來可應用于圖像生成等領域。量子比特間的糾纏或連接程度是影響量子計算處理能力的重要因素之一,目前報道的處理器結構設計和量子比特糾纏程度不盡統(tǒng)一,大部分并未實現(xiàn)全局糾纏。離子阱路線方面,IonQ 已實現(xiàn) 79 位處理量子比特和 160 位存儲量子比特。光量子路線方面,中科大已實現(xiàn) 18 位光量子糾纏操控,處于國際領先地位。硅量子點路線方面,新南威爾士大學報道了保真度為 99.96%的單比特邏輯門和保真度為 98%的雙比特邏輯門,中科大也實現(xiàn)了高保真的單比特邏輯門。此外,我國本源量子研發(fā)了適用于 20 位量子比特的量子測控一體機,用于提供量子處理器芯片運行所需要的關鍵信號,實現(xiàn)量子芯片操控。
目前,量子計算物理平臺中的超導和離子阱路線相對領先,但尚無任何一種路線能夠完全滿足量子計算技術實用化的 DiVincenzo 條件,包括:(1)可定義量子比特,(2)量子比特有足夠的相干時間,(3)量子比特可以初始化,(4)可以實現(xiàn)通用的量子門集合,(5)量子比特可以被讀出。為充分利用每種技術的優(yōu)勢,未來的量子計算機也可能是多種路線并存的混合體系。
(二)“量子優(yōu)越性”突破里程碑,實用化尚有距離
量子優(yōu)越性(Quantum Supremacy,也譯作“量子霸權”)的概念由 MIT 的 John Preskill 教授首先提出,指量子計算在解決特定計算困難問題時,相比于經(jīng)典計算機可實現(xiàn)指數(shù)量級的運算處理加速,從而體現(xiàn)量子計算原理性優(yōu)勢。其中,特定計算困難問題是指該問題的計算處理,能夠充分適配量子計算基于量子比特的疊加特性和量子比特
間的糾纏演化特性而提供的并行處理能力,從而發(fā)揮出量子計算方法相比于傳統(tǒng)計算方法在解決該問題時的顯著算力優(yōu)勢。
2019 年 10 月,《自然》雜志以封面論文形式報道了 Google 公司基于可編程超導處理器 Sycamore,實現(xiàn)量子優(yōu)越性的重要研究成果。該處理器采用倒裝焊封裝技術和可調量子耦合器等先進工藝和架構設計,實現(xiàn)了 53 位量子物理比特二維陣列的糾纏與可控耦合,在解決隨機量子線路采樣問題時,具有遠超過現(xiàn)有超級計算機的處理能力。Google 研究成果是證明量子計算原理優(yōu)勢和技術潛力的首個實際案例,具有里程碑意義。這一熱點事件所引發(fā)的震動和關注,將進一步推動全球各國在量子計算領域的研發(fā)投入、工程實踐和應用探索,為加快量子計算機的研制和實用化注入新動力。
需要指出的是,現(xiàn)階段量子計算的研究發(fā)展水平距離實用化仍有較大差距。量子計算系統(tǒng)非常脆弱,極易受到材料雜質、環(huán)境溫度和噪聲等外界因素影響而引發(fā)退相干效應,使計算準確性受到影響,甚至計算能力遭到破壞。發(fā)展速度最快的超導技術路線,在可擴展性、操控時間和保真度等方面也存在局限。此外,可編程通用量子計算機需要大量滿足容錯閾值的物理量子比特進行糾錯處理,克服退相干效應影響,獲得可用的邏輯量子比特。以運行 Shor 算法破譯密碼為例,要攻破 AES 加密算法需要數(shù)千個量子邏輯比特,轉換為量子物理比特可能需要數(shù)萬個或者更多。現(xiàn)有研究報道中的物理量子比特數(shù)量和容錯能力與實際需求尚有很大差距,量子邏輯比特仍未實現(xiàn)。通用量子計算機的實用化,業(yè)界普遍預計仍需十年以上時間。
在達到通用量子計算所需的量子比特數(shù)量、量子容錯能力和工程化條件等要求之前,專用量子計算機或量子模擬器將成為量子計算發(fā)展的下一個重要目標。結合量子計算和量子模擬應用算法等方面研究,在量子體系模擬、分子結構解析、大數(shù)據(jù)集優(yōu)化和機器學習算法加速等領域開發(fā)能夠發(fā)揮量子計算處理能力優(yōu)勢的“殺手級應用”,將為量
子計算技術打開實用化之門。
(三)量子計算云平臺成為熱點,發(fā)展方興未艾
量子處理器需要在苛刻的環(huán)境下進行運算和儲存,通過云服務進行量子處理器的接入和量子計算應用推廣成為量子計算算法及應用研究的主要形式之一。用戶在本地編寫量子線路和代碼,將待執(zhí)行的量子程序提交給遠程調度服務器,調度服務器安排用戶任務按照次序傳遞給后端量子處理器,量子處理器完成任務后將計算結果返回給調度服務器,調度服務器再將計算結果變成可視化的統(tǒng)計分析發(fā)送給用戶,完成整個計算過程。近年來,越來越多的量子計算公司和研究機構發(fā)布量子計算云平臺,以實現(xiàn)對量子處理器資源的充分共享,并提供各種基于量子計算的衍生服務。
量子計算云平臺通用體系架構
資料來源:中國信息通信研究院
量子計算云平臺的通用體系架構主要包括計算引擎層、基礎開發(fā)層、通用開發(fā)層、應用組件層和應用服務層。量子計算云平臺的服務模式主要分為三種:一是量子基礎設施服務(q-IaaS),即提供量子計算云服務器、量子模擬器和真實量子處理器等計算及存儲類基礎資源;二是量子計算平臺服務(q-PaaS),即提供量子計算和量子機器學習算法的軟件開發(fā)平臺,包括量子門電路、量子匯編、量子開發(fā)套件、量子算法庫、量子加速引擎等;三是量子應用軟件服務(q-SaaS),即根據(jù)具體行業(yè)的應用場景和需求設計量子機器學習算法,提供量子加速版本的 AI 應用服務,如生物制藥、分子化學和交通治理等。目前,量子計算云平臺以 q-PaaS 模式為主,提供量子模擬器、計算工具和開發(fā)套件等軟件服務。隨著量子計算物理平臺與云基礎設施的深度結合,以及量子處理器功能和性能的不斷發(fā)展,q-IaaS 模式比重將逐步增多。未來,隨著量子計算產(chǎn)業(yè)進一步發(fā)展成熟、生態(tài)逐步開放,將有更多的行業(yè)和企業(yè)嘗試通過 q-SaaS 模式對其業(yè)務處理進行賦能。
美國量子計算云平臺布局較早,發(fā)展迅速。IBM 已推出 20 位量子比特的量子云服務,提供 QiKit 量子程序開發(fā)套件,建立了較為完善的開源社區(qū)。Google開發(fā)了Cirq量子開源框架和OpenFermion-Cirq量子計算應用案例,可搭建量子變分算法(Variational Algorithms),模擬分子或者復雜材料的相關特性。Rigetti 推出的量子計算云平臺以混合量子+經(jīng)典的方法開發(fā)量子計算運行環(huán)境,使用 19 位量子比特超導芯片進行無監(jiān)督機器學習訓練及推理演示,提供支持多種操作系統(tǒng)的 Forest SDK 量子軟件開發(fā)環(huán)境。
我國量子計算云平臺起步較晚,目前發(fā)展態(tài)勢良好,與國際先進水平相比在量子處理器、量子計算軟件方面的差距逐步縮小。中科大與阿里云共同推出 11 位超導量子計算云接入服務。華為發(fā)布 HiQ 量子計算模擬云服務平臺,可模擬全振幅的 42 位量子比特,單振幅的81 位量子比特,并開發(fā)兼容 ProjectQ 的量子編程框架。本源量子推出的量子計算云平臺可提供 64 位量子比特模擬器和基于半導體及超導的真實量子處理器,提供 Qrunes 編程指令集,Qpanda SDK 開發(fā)套件,推出移動端與桌面端應用程序,兼具科普、教學和編程等功能,為我國量子計算的研究和應用推廣提供了有益探索。
(四)產(chǎn)業(yè)發(fā)展格局正在形成、生態(tài)鏈不斷壯大
在量子計算領域,美國近年來持續(xù)大力投入,已形成政府、科研機構、產(chǎn)業(yè)和投資力量多方協(xié)同的良好局面,并建立了在技術研究、樣機研制和應用探索等方面的全面領先優(yōu)勢。英、歐、日、澳等國緊密跟隨,領先國家之間通過聯(lián)合攻關和成果共享,正在形成并不斷強化聯(lián)盟優(yōu)勢。我國近年來取得系列研究成果,但與美國相比仍有一定差距。此外,印度、韓國、俄羅斯、以色列等國也開始將量子計算技術列入國家技術計劃加大投入。
科技巨頭間的激烈競爭,推動量子計算技術加速發(fā)展。Google、IBM、英特爾、微軟在量子計算領域布局多年,霍尼韋爾隨后加入,產(chǎn)業(yè)巨頭基于雄厚的資金投入、工程實現(xiàn)和軟件控制能力積極開發(fā)原型產(chǎn)品、展開激烈競爭,對量子計算成果轉化和加速發(fā)展助力明顯。
Google 在 2018 年實現(xiàn) 72 位超導量子比特,在 2019 年證明量子計算優(yōu)越性。IBM 在 2019 年 1 月展示具有 20 位量子比特的超導量子計算機,并在 9 月將量子比特數(shù)量更新為 53 位。微軟在 2019 年推出量子計算云服務 Azure Quantum,可以與多種類型的硬件配合使用?;裟犴f爾的離子阱量子比特裝置已進入測試階段。
我國阿里巴巴、騰訊、百度和華為近年來通過與科研機構合作或聘請具有國際知名度的科學家成立量子實驗室,在量子計算云平臺、量子軟件及應用開發(fā)等領域進行布局。阿里與中科大聯(lián)合發(fā)布量子計算云平臺并在 2018 年推出量子模擬器“太章”。騰訊在量子 AI、藥物研發(fā)和科學計算平臺等應用領域展開研發(fā)。百度在 2018 年成立量子計算研究所,開展量子計算軟件和信息技術應用等業(yè)務研究。華為在2018 年發(fā)布 HiQ 量子云平臺,并在 2019 年推出昆侖量子計算模擬一體原型機。我國科技企業(yè)進入量子計算領域相對較晚,在樣機研制及應用推動方面與美國存在較大差距。
初創(chuàng)企業(yè)是量子計算技術產(chǎn)業(yè)發(fā)展的另一主要推動力量。初創(chuàng)企業(yè)大多脫胎于科研機構或科技公司,近年來,來自政府、產(chǎn)業(yè)巨頭和投資機構的創(chuàng)業(yè)資本大幅增加,初創(chuàng)企業(yè)快速發(fā)展。目前,全球有超過百余家初創(chuàng)企業(yè),涵蓋軟硬件、基礎配套及上層應用各環(huán)節(jié),企業(yè)集聚度以北美和歐洲(含英國)最高。盡管量子計算目前仍處于產(chǎn)業(yè)發(fā)展的初期階段,但軍工、氣象、金融、石油化工、材料科學、生物醫(yī)學、航空航天、汽車交通、圖像識別和咨詢等眾多行業(yè)已注意到其巨大的發(fā)展?jié)摿?,開始與科技公司合作探索潛在用途,生態(tài)鏈不斷壯大。
在量子計算研究和應用發(fā)展的同時,其產(chǎn)業(yè)基礎配套也在不斷完善。2019 年英特爾與 Bluefors 和 Afore 合作推出量子低溫晶圓探針測試工具,加速硅量子比特測試過程。本源量子創(chuàng)立本源量子計算產(chǎn)業(yè)聯(lián)盟,2019 年攜手中船鵬力共建量子計算低溫平臺。
(五)應用探索持續(xù)深入,“殺手級應用”或可期待
當前階段,量子計算的主要應用目標是解決大規(guī)模數(shù)據(jù)優(yōu)化處理和特定計算困難問題(NP)。機器學習在過去十幾年里不斷發(fā)展,對計算能力提出巨大需求,結合了量子計算高并行性的新型機器學習算法可實現(xiàn)對傳統(tǒng)算法的加速優(yōu)化,是目前的研究熱點。量子機器學算法主要包括異質學習(HHL)算法、量子主成分分析(qPCA)、量子支持向量機(qSVM)和量子深度學習等。目前,量子機器學習算法在計算加速效果方面取得一定進展,理論上已證明量子算法對部分經(jīng)典計算問題具有提速效果,但處理器物理實現(xiàn)能力有限,算法大多只通過模擬驗證,并未在真實系統(tǒng)中進行迭代,仍處發(fā)展初期。
目前,基于量子退火和其他數(shù)據(jù)處理算法的專用量子計算機,已經(jīng)展開系列應用探索。Google 聯(lián)合多家研究機構將量子退火技術應用于圖像處理、蛋白質折疊、交通流量優(yōu)化、空中交通管制、海嘯疏散等領域。JSR 和三星嘗試使用量子計算研發(fā)新材料特性。埃森哲、Biogen 和 1Qbit 聯(lián)合開發(fā)量子化分子比較應用,改善分子設計加速藥物研究。德國 HQS 開發(fā)的算法可以在量子計算機和經(jīng)典計算機上有效地模擬化學過程。摩根大通、巴克萊希望通過蒙特卡洛模擬加速來優(yōu)化投資組合,以提高量化交易和基金管理策略的調整能力,優(yōu)化資產(chǎn)定價及風險對沖。量子計算應用探索正持續(xù)深入,未來 3-5 年有望基于量子模擬和嘈雜中型量子計算(NISQ)原型機在生物醫(yī)療、分子模擬、大數(shù)據(jù)集優(yōu)化、量化投資等領域率先實現(xiàn)應用。
三、量子通信領域研究與應用進展
(一)量子通信技術研究和樣機研制取得新成果
量子通信主要分量子隱形傳態(tài)(Quantum Teleportation,簡稱 QT)和量子密鑰分發(fā)(Quantum Key Distribution,簡稱 QKD)兩類。QT基于通信雙方的光子糾纏對分發(fā)(信道建立)、貝爾態(tài)測量(信息調制)和幺正變換(信息解調)實現(xiàn)量子態(tài)信息直接傳輸,其中量子態(tài)信息解調需要借助傳統(tǒng)通信輔助才能完成。QKD 通過對單光子或光場正則分量的量子態(tài)制備、傳輸和測量,首先在收發(fā)雙方間實現(xiàn)無法被竊聽的安全密鑰共享,再與傳統(tǒng)加密技術相結合完成經(jīng)典信息加密和安全傳輸,基于 QKD 的保密通信稱為量子保密通信。
近年來,QT 研究在空、天、地等平臺積極開展實驗探索。2017年,中科大基于“墨子號”量子科學實驗衛(wèi)星,實現(xiàn)星地之間 QT 傳輸,低軌衛(wèi)星與地面站采用上行鏈路實現(xiàn)量子態(tài)信息傳輸,最遠傳輸距離達到 1400 公里,成為目前 QT 自由空間傳輸距離的最遠記錄。2018年,歐盟量子旗艦計劃成立量子互聯(lián)網(wǎng)聯(lián)盟(QIA),由 Delft 技術大學牽頭,采用囚禁離子和光子波長轉換技術探索實現(xiàn)量子隱形傳態(tài)和量子存儲中繼,計劃在荷蘭四城市之間建立全球首個光纖 QT 實驗網(wǎng)絡,基于糾纏交換實現(xiàn)量子態(tài)信息的直接傳輸和多點組網(wǎng)。2019 年,南京大學報道基于無人機開展空地量子糾纏分發(fā)和測量實驗,無人機攜帶光學發(fā)射機載荷,完成與地面接收站點之間 200 米距離的量子糾纏分發(fā)測量。目前,QT 研究仍主要局限在各種平臺和環(huán)境條件下的實驗探索,包括高品質糾纏制備、量子態(tài)存儲中繼和高效率量子態(tài)檢測等關鍵技術瓶頸尚未突破,距離實用化仍有較大距離。
近年來,QKD 的實驗研究不斷突破傳輸距離和密鑰成碼率的記錄。2018 年,東芝歐研所報道了新型相位隨機化雙光場編碼和傳輸實驗,實現(xiàn) 550 公里超低損耗光纖傳輸距離記錄,其中的雙光場中心測量節(jié)點可以作為量子中繼的一種替代方案。中科大和奧地利科學院聯(lián)合報道了基于“墨子號”衛(wèi)星實現(xiàn)7600公里距離的洲際QKD和量子保密通信,在可用時間窗口內(nèi),基于衛(wèi)星中繼的密鑰傳輸平均速率~3kbps,在兩地 QKD 密鑰累積一定數(shù)量之后,可以用于進行圖片和視頻會議等應用的加密傳輸。日內(nèi)瓦大學報道了采用極低暗記數(shù)的超導納米線單光子探測器的 QKD 傳輸實驗,創(chuàng)造了 421 公里的單跨段光纖傳輸最遠距離,對應密鑰成碼率 0.25bit/s,在 250 公里光纖傳輸距離對應密鑰成碼率為 5kbit/s。東芝歐研所也報道基于 T12 改進型QKD 協(xié)議和 LDPC 糾錯編碼的 QKD 系統(tǒng)實驗,在 10 公里光纖信道連續(xù)運行 4 天,平均密鑰成碼率達到 13.72Mbps。QKD 實驗研究進一步提升系統(tǒng)性能和傳輸能力,為應用推廣奠定基礎。 在量子通信領域,還有量子安全直接通信(Quantum Secure Direct Communication,簡稱 QSDC)技術方向也值得關注。QSDC 系統(tǒng)中信息接收端為 Bob,信息發(fā)射端為 Alice。Bob 端脈沖光源經(jīng)過衰減器和隨機信號控制相位調制后,輸出單光子量子態(tài)信號,在 Alice 端隨機抽樣檢測一部分量子態(tài)信號,對剩余的量子態(tài)信號用兩種不同幺正變換編碼,發(fā)送經(jīng)典信息,并通過原信道以時分復用方式反向回傳到 Bob 端,Bob 端根據(jù)接收到的單光子量子態(tài)與初始制備態(tài)的差異性檢測,解調出 Alice 的編碼信息。
2019 年,清華大學物理系基于首創(chuàng)的 QSDC 理論和實驗方案,實現(xiàn)了原理實驗樣機研制,并完成實驗室光纖環(huán)境中基于 QSDC 的信息直接傳輸演示實驗。實驗室環(huán)境 10 公里光纖信道傳輸文件的信息傳輸平均速率約為 4.69 kbit/s。QSDC 的技術結合了QKD 和 QT 的部分技術思想,以及信道安全容量分析等信息論方法,能夠基于量子物理學和信息論同步實現(xiàn)經(jīng)典信道安全狀態(tài)監(jiān)測和信息加密傳輸。目前實驗樣機系統(tǒng)的信息傳輸速率較為有限,需使用低溫制冷超導探測器,實用化和工程化水平仍有較大提升空間。
(二)量子密鑰分發(fā)技術演進關注提升實用化水平
隨著 QKD 技術進入實用化階段,并不斷開展試點應用和網(wǎng)絡建設,進一步提升其實用化和商用化水平成為科研機構和產(chǎn)業(yè)鏈上下游關注和技術演進的主要方向。QKD 實用化技術和應用演進的主要方向包括基于光子集成(PIC)技術提升收發(fā)機的集成度,采用連續(xù)變量(CV)QKD 技術開展實驗和商用設備開發(fā),以及開展 QKD 與現(xiàn)有光通信網(wǎng)絡的共纖傳輸和融合組網(wǎng)等方面的研究與探索。 QKD 技術的商用化需要在設備集成度,系統(tǒng)可靠性,解決方案性價比和標準化程度等方面進行提升。通過與 PIC 和硅光等新型技術進行融合,可以進一步實現(xiàn) QKD 設備光學組件的小型化和集成化,同時提升系統(tǒng)的功能性能和可靠性,目前已經(jīng)成為研究機構和產(chǎn)業(yè)鏈上下游關注的焦點之一。英國 Bristol 大學已報道了基于 InP 和 SiON等材料的 PIC 技術方案,可以實現(xiàn) QKD 設備量子態(tài)信號調制器和解調器的芯片化集成,支持多種編碼調制方案,可一定程度提高 QKD系統(tǒng)工程化水平,但目前脈沖光源和單光子探測器(SPD)模塊仍難以實現(xiàn)集成。我國深圳海思半導體有限公司和山東國訊量子芯科技有限公司等,在 QKD 調制解調芯片化領域也進行了研究布局。 CV-QKD 中的高斯調制相干態(tài)(GG02)協(xié)議應用廣泛,系統(tǒng)采用與經(jīng)典光通信相同的相干激光器和平衡零差探測器,具有集成度與成本方面的優(yōu)勢,量子態(tài)信號檢測效率可達 80%,便于和現(xiàn)有光通信系統(tǒng)及網(wǎng)絡進行融合部署。主要局限是協(xié)議后處理算法復雜度高,長距離高損耗信道下的密鑰成碼率較低,并且協(xié)議安全性證明仍有待進一步完善。CV-QKD 具有低成本實現(xiàn)城域安全密鑰分發(fā)的潛力,應用部署難度小,產(chǎn)業(yè)鏈成熟度高,未來可能成為 QKD 規(guī)模應用可行解決方案。2019 年,北大和北郵報道了在西安和廣州現(xiàn)網(wǎng) 30 公里和 50公里光纖,采用線路噪聲自適應調節(jié)和發(fā)射機本振共纖傳輸方案,實現(xiàn) 5.91kbit/s 和 5.77kbit/s 的密鑰成碼率,為 CV-QKD 現(xiàn)網(wǎng)實驗的新成果,并在青島開展現(xiàn)網(wǎng)示范應用。
QKD 商用化系統(tǒng)在網(wǎng)絡建設和部署過程中,由于量子態(tài)光信號的極低光功率,以及單光子探測器的超高檢測靈敏度,所以通常需要獨立的暗光纖進行傳輸,而與其他光通信信號進行共纖混合傳輸,可能導致光纖內(nèi)產(chǎn)生的拉曼散射噪聲影響單光子檢測事件響應的正確率。QKD 系統(tǒng)與光通信系統(tǒng)的共纖混傳能力是限制現(xiàn)網(wǎng)部署的一個關鍵性因素,也是未來發(fā)展演進的重要研究方向之一。目前,已有中科大,東芝歐研所,中國電信和中國聯(lián)通等報道了基于 1310nm 的 O波段 DV-QKD 系統(tǒng)與 1550nm 的 C 波段光通信系統(tǒng)的共纖混傳實驗和現(xiàn)網(wǎng)測試,但 QKD 系統(tǒng)的密鑰成碼率對光纖的損耗敏感,在實際應用部署中并不推薦使用 O 波段,并且 1310nm 的 QKD 系統(tǒng)商用化程度較低。商用 QKD 系統(tǒng)通常采用 1550nm 的 C 波段作為量子態(tài)光信號波長,與 1310nm 的 O 波段光通信設備的共纖混傳,也在部分運營商進行了相關測試。在限制光通信信號功率至接收機靈敏度范圍的條件下,可以支持 QKD 在約 50 公里的城域范圍內(nèi)共纖傳輸和融合部署,并且密鑰成碼率與獨占光纖傳輸條件仍基本保持相同量級。未來,在含有光放大器的商用光通信系統(tǒng)中,進行 QKD 系統(tǒng)的融合組網(wǎng)和共纖傳輸,仍然是重要研究方向,在共纖傳輸方面,CV-QKD 采用本振光相干探測和平衡接收,對于拉曼散射噪聲具有較強的容忍度,相比 DV-QKD 具有一定原理性優(yōu)勢。
(三)量子保密通信應用探索和產(chǎn)業(yè)化進一步發(fā)展
基于 QKD 的量子保密通信在全球范圍內(nèi)進一步開展了試點應用和網(wǎng)絡建設,歐盟“量子旗艦計劃”項目支持西班牙和法國等地運營商,開展 QKD 實驗網(wǎng)絡建設,與科研項目結合進行商業(yè)化應用探索。韓國 SKT 等運營商通過收購瑞士 IDQ 股權等方式,也開始介入 QKD技術領域,并承建了韓國首爾地區(qū)的 QKD 實驗網(wǎng)絡。 我國量子保密通信的網(wǎng)絡建設和示范應用發(fā)展較為迅速,近年來中科大潘建偉院士團隊及其產(chǎn)業(yè)公司開展了“京滬干線”和國家廣域量子保密通信骨干網(wǎng)絡建設一期工程等 QKD 網(wǎng)絡建設項目。中國科大郭光燦院士團隊聯(lián)合相關企業(yè)建設了從合肥到蕪湖的“合巢蕪城際量子密碼通信網(wǎng)絡”,以及從南京到蘇州總長近 600 公里的“寧蘇量子干線”;華南師大劉頌豪院士團隊和清華大學龍桂魯教授團隊聯(lián)合啟動建設覆蓋粵港澳大灣區(qū)的“廣佛肇量子安全通信網(wǎng)絡”。我國的QKD 網(wǎng)絡建設和示范應用項目的數(shù)量和規(guī)模已處于世界領先。
在產(chǎn)業(yè)鏈發(fā)展方面,近年來我國又新增了一批由科研機構轉化或海外歸國人才創(chuàng)立的 QKD 設備供應商,并且在技術路線上呈現(xiàn)多元化發(fā)展態(tài)勢,QKD 技術研究機構和設備供應商情況。CV-QKD 技術在北大、北郵、上海交大和山西大學等高校和研究機構中取得大量研究成果。上海循態(tài)量子、北京啟科量子、北京中創(chuàng)為量子和廣東國騰量子等公司加入 QKD 設備供應商行列,同時傳統(tǒng)通信設備行業(yè)中的華為和烽火等設備供應商,也開始關注基于 CV-QKD等技術的商用化設備,并與傳統(tǒng)通信設備和系統(tǒng)進行整合,探索為信息網(wǎng)絡中的加密通信和安全增值服務提供解決方案。 基于 QKD 的量子保密通信目前主要用于點到點的密鑰共享和基于 VPN 和路由器等有線網(wǎng)絡的信息傳輸加密。探索將 QKD 與無線通信加密應用場景結合,對于擴展量子保密通信的應用場景,開拓商業(yè)化應用市場,以及推動產(chǎn)業(yè)化發(fā)展具有重要價值。其中的主要難點是量子密鑰一旦生成之后,就不再具有由量子物理特性保證的安全性,所以密鑰本身不能再通過通信網(wǎng)絡進行二次傳輸。通過使用 QKD 網(wǎng)絡作為密鑰分發(fā)基礎設施,在不同 QKD 網(wǎng)絡節(jié)點的安全管理域內(nèi),使用密鑰充注設備可以為符合一定安全性等級要求的移動存儲介質,例如 SD 卡等,進行密鑰充注。密鑰存儲介質再與具備身份認證和加密通信功能的無線終端進行融合,可以實現(xiàn)使用量子密鑰對無線終端與加密服務器之間的身份認證和會話密鑰協(xié)商過程的加密保護,從而為無線通信領域的加密應用提供一定程度的量子加密服務。目前該解決方案已有初步商用化設備,并開始探索在政務和專網(wǎng)等高安全性需求領域的無線加密通信應用,未來可能成為擴展量子保密通信商業(yè)化應用的一個重要方向。
(四)量子保密通信網(wǎng)絡現(xiàn)實安全性成為討論熱點
在量子保密通信試點應用和網(wǎng)絡建設發(fā)展的同時,量子保密通信系統(tǒng)和網(wǎng)絡的現(xiàn)實安全性也是學術界、產(chǎn)業(yè)界和社會輿論關注的問題之一。近來,中科大郭光燦院士團隊1和上海交大金賢敏教授團隊2發(fā)表的關于 QKD 系統(tǒng)現(xiàn)實安全性的研究論文,進一步引發(fā)了關于量子保密通信系統(tǒng)和網(wǎng)絡現(xiàn)實安全性的討論。 QKD 技術經(jīng)過近 40 年的發(fā)展,其中密鑰分發(fā)的安全性由量子力和共識,但基于 QKD 的量子保密通信系統(tǒng)和網(wǎng)絡的現(xiàn)實安全性仍然是值得關注和研究的問題。 QKD 只是量子保密通信系統(tǒng)的一個環(huán)節(jié),量子保密通信系統(tǒng)整體滿足信息論可證明安全性需要 QKD、一次一密加密和安全身份認證三個環(huán)節(jié),缺一不可。目前 QKD 商用系統(tǒng)在現(xiàn)網(wǎng)光纖中的密鑰生成速率約為數(shù)十 kbit/s 量級,對于現(xiàn)有信息通信網(wǎng)絡中的 SDH、OTN和以太網(wǎng)等高速業(yè)務,難以采用一次一密加密,通常與傳統(tǒng)對稱加密算法(例如 AES、SM1 和 SM4 加密算法)相結合,由 QKD 提供對稱加密密鑰。在此情況下,由于存在密鑰的重復使用,并不滿足一次一密的加密體制要求。需要指出的是,相比傳統(tǒng)對稱加密體系,量子保密通信仍然能夠帶來安全性提升和應用價值,一方面相比原有對稱加密算法的收發(fā)雙發(fā)自協(xié)商產(chǎn)生加密密鑰,QKD 所提供的加密密鑰在密鑰分發(fā)過程的防竊聽和破解的能力得到加強;另一方面 QKD 能夠提升對稱加密體系中的密鑰更新速率,從而降低密鑰和加密數(shù)據(jù)被計算破解的風險。
QKD 技術能夠保障點到點的光纖或自由空間鏈路中的密鑰分發(fā)的安全性。由于量子存儲和量子中繼技術距離實用化仍有一定距離,長距離的 QKD 線路和網(wǎng)絡需要借助“可信中繼節(jié)點”技術,進行逐段密鑰分發(fā),密鑰落地存儲和中繼。密鑰一旦落地存儲,就不再具備量子態(tài)和由量子力學保證的信息論安全性,QKD 線路和網(wǎng)絡中的“可信中繼節(jié)點”需要采用傳統(tǒng)信息安全領域的高等級防護和安全管理來保證節(jié)點自身的安全性。目前針對“可信中繼節(jié)點”的安全性防護要求、學的基本原理保證,理論安全性證明也相對完備,QKD 技術在提供對稱密鑰的安全性方面的價值已經(jīng)獲得全球學術界和產(chǎn)業(yè)界的承認標準化研究工作正在逐步開展,測評工作有待加強。未來進一步加強可信中繼節(jié)點技術要求、安全性分析和測評方法等標準的研究與實施,將是保障量子保密通信網(wǎng)絡建設和應用的現(xiàn)實安全性的重要措施之一。通過明確可信中繼節(jié)點的安全防護要求和實施方案并通過相關測評驗證,結合符合相應等級要求的密鑰中繼管理方案,可以實現(xiàn)符合安全性等級保護要求的 QKD 組網(wǎng)和應用。 QKD 技術的信息論可證明安全性是指理論證明層面,對于實際QKD 系統(tǒng)而言,由于實際器件(例如光源、探測器和調制器等)無法滿足理論證明的假設條件,即可能存在安全性漏洞,所以 QKD 系統(tǒng)的現(xiàn)實安全性以及漏洞攻擊和防御,一直是學術界研究的熱點之一。前述的中科大郭光燦院士團隊和上海交大金賢敏教授團隊的研究報道,都是針對 QKD 實際系統(tǒng)的安全性漏洞進行攻擊和防御改進的學術研究成果。需要指出的是,此類研究通常在完全控制系統(tǒng)設備的條件下,采用極端條件模擬(例如超高光功率注入等方式)來攻擊系統(tǒng)獲取密鑰信息,與實際系統(tǒng)和網(wǎng)絡中可行的攻擊和竊聽屬于不同層面。
并且此類研究的出發(fā)點和落腳點也是在于改進和提升 QKD 系統(tǒng)的實際安全性,通常都會給出針對所提出的攻擊方式的系統(tǒng)防御策略和解決方案,而非否定 QKD 系統(tǒng)安全性。針對 QKD 系統(tǒng)和網(wǎng)絡現(xiàn)實安全性的學術研究在未來將會持續(xù)進行,從實際應用層面而言,QKD系統(tǒng)和網(wǎng)絡也需要持續(xù)進行現(xiàn)實安全性研究和測評驗證。
(五)量子保密通信規(guī)?;瘧门c產(chǎn)業(yè)化仍需探索
統(tǒng)協(xié)議,關鍵器件和后處理算法等方面的限制,商用 QKD 系統(tǒng)在現(xiàn)網(wǎng)中的單跨段光纖傳輸距離通常在百公里以內(nèi),密鑰成碼率約為數(shù)十kbit/s 量級,系統(tǒng)傳輸能力和密鑰成碼率有待進一步提高。同時,QKD設備系統(tǒng)的工程化水平也有一定提升空間,例如偏振調制型設備在抗光纖線路擾動方面存在技術難點;單光子探測器需要低溫制冷,對機房環(huán)境溫度變化較為敏感;QKD 系統(tǒng)和網(wǎng)絡的管理和運維等方面尚未完全成熟。此外,量子保密通信系統(tǒng)和網(wǎng)絡需要密鑰管理設備和加密通信設備進行聯(lián)合組網(wǎng),密鑰管理設備屬于信息安全領域,加密通信設備屬于信息通信領域,目前量子保密通信業(yè)界與信息通信行業(yè)和信息安全行業(yè)的合作與融合還比較有限,設備產(chǎn)品的工程化和標準化水平需進一步提升和演進。
量子保密通信技術的應用發(fā)展還面臨加密體制的技術路線競爭。量子保密通信的應用背景主要是面向未來量子計算對于現(xiàn)有公鑰加密體系的計算破解威脅。一方面,量子計算的發(fā)展目前還處于多種技術路線探索的樣機實驗階段,盡管近年來發(fā)展加速,但是距離實現(xiàn)真正具備破解密碼體系的大規(guī)??删幊掏ㄓ没孔佑嬎隳芰θ杂泻荛L的距離。另一方面,信息安全行業(yè)也在為應對量子計算可能帶來的安全性威脅進行積極準備,目前以美國國家標準和技術研究院(NIST)主導的抗量子計算破解的新型加密體系和算法的全球征集和評比已經(jīng)完成第一輪篩選,計劃在 2023 年左右完成三輪公開評選,并推出新型加密體制標準,我國上海交大、復旦大學和中科院等單位提交的新型加密方案也參與其中。未來,抗量子計算破解的安全加密體制存在量子保密通信和后量子安全加密的技術路線競爭,加快提升 QKD系統(tǒng)成熟度、實用化水平和性價比,是搶占先機的關鍵。 量子保密通信的商業(yè)化應用和市場開拓仍需進一步探索。量子保密通信是對現(xiàn)有的保密通信技術中的對稱加密體系的一種安全性提升,能夠解決密鑰分發(fā)過程的安全性問題,提升對稱加密通信的安全性水平,但是并不能完全解決信息網(wǎng)絡中面臨的所有安全性問題。量子保密通信主要適用于具有長期性和高安全性需求的保密通信應用場景,例如政務和金融專網(wǎng),以及電力等關鍵基礎設施網(wǎng)絡等,市場容量和產(chǎn)業(yè)規(guī)模相對有限,目前主要依靠國家和地方政府的支持和投入。量子保密通信技術的商業(yè)化應用推廣和市場化發(fā)展仍然面臨技術成熟度、設備可靠性和投入產(chǎn)出性價比等方面的考驗,需要產(chǎn)學研用各方共同努力,從設備升級、產(chǎn)業(yè)鏈建設、標準完善和商用化探索等多方面共同推動。
我國面臨的信息安全形勢錯綜復雜,在政務、金融、外交、國防和關鍵基礎設施等領域,提高信息安全保障能力的需求較為緊迫,對量子保密通信技術帶來的長期信息安全保障能力有客觀需求和應用前景。同時,量子保密通信技術的產(chǎn)業(yè)應用和市場化推廣,也需要其自身技術成熟度、設備工程化、現(xiàn)實安全性和可靠性水平的不斷提升,以滿足規(guī)?;瘧貌渴鸷瓦\維管理等方面的條件和要求。針對量子保密通信系統(tǒng)設備的工程化和實用化的關鍵瓶頸開展基礎性共性技術,例如高性能單光子探測器、集成化調制解調器和高性能后處理算法等領域的攻關突破,將政策支持的優(yōu)勢真正轉化為核心技術和產(chǎn)品功能量子信息技術發(fā)展與應用研究報告(2019 年) 性能的優(yōu)勢,進一步提升系統(tǒng)工程化水平和解決方案性價比,是應用發(fā)展演進和產(chǎn)業(yè)做大做強的關鍵所在。
四、量子測量領域研究與應用進展
(一)量子測量突破經(jīng)典測量極限,應用領域廣泛
信息技術包含信息獲取、處理、傳遞三大部分,與測量、計算和通信三大領域分別對應。精密測量技術作為從物理世界獲取信息的主要途徑,在信息技術中起著至關重要的作用。精密測量不僅在基礎科學研究方面具有重要的學術價值,而且還能服務于國家重大需求,對各領域的科學進步具有推動作用,因此具有重大的研究意義。精密測量的本質是測量系統(tǒng)與待測物理量的相互作用,通過測量系統(tǒng)性質的變化表征待測物理量的大小。經(jīng)典的測量方法的精度往往受限于衍射極限、散粒噪聲和海森堡極限等因素,測量精度提升面臨困難。
近年來量子技術的發(fā)展,使得對微觀對象量子態(tài)的操縱和控制日趨成熟,量子測量技術也應運而生。利用量子相干、量子糾纏、量子統(tǒng)計等特性可以突破經(jīng)典力學框架下的測量極限,從而實現(xiàn)更高精度的測量?;谖⒂^粒子系統(tǒng)和量子力學特性實現(xiàn)對物理量進行高精度的測量稱為量子測量。在量子測量中,電磁場、重力、加速度、角速度等外界環(huán)境直接與原子、離子、電子、光子等量子體系發(fā)生相互作用并改變它們的量子狀態(tài),最終通過對這些變化后的量子態(tài)進行檢測實現(xiàn)外界環(huán)境的高靈敏度測量。而利用當前成熟的量子態(tài)操控技術,可以進一步提高測量的靈敏度。
在量子計算、量子通信等領域,量子系統(tǒng)的量子狀態(tài)極易收到外界環(huán)境的影響而發(fā)生改變,嚴重的制約著量子系統(tǒng)的穩(wěn)定性和健壯性。量子測量恰恰利用量子體系的這一“缺點”,使量子體系與待測物理量相互作用,從而引發(fā)量子態(tài)的改變來對物理量進行測量。對于量子測量的定義,一直存在著爭議和疑問。根據(jù)國內(nèi)外量子信息技術領域技術分類和業(yè)界調研反饋,廣義量子測量可以涵蓋利用量子特性來獲得比經(jīng)典測量系統(tǒng)更高的分辨率或靈敏度的測量技術。量子測量技術應具有兩大基本特征:一是操控觀測對象是微觀粒子系統(tǒng),二是與待測物理量相互作用導致量子態(tài)變化,而 具備以上兩點特征的測量技術可以納入量子測量的范疇。
量子測量可以分為以下五個基本步驟,如圖 14 所示。其中,量子態(tài)初始化是將量子系統(tǒng)初始化到一個穩(wěn)定的已知基態(tài);初始測量態(tài)根據(jù)不同的應用及技術原理,通過控制信號將量子系統(tǒng)調制到初始測量狀態(tài);與待測物理量相互作用通過待測物理量(重力、磁場等)作用在量子系統(tǒng)上一段時間,使其量子態(tài)發(fā)生改變;量子態(tài)讀取通過測量確定量子系統(tǒng)的最終狀態(tài)(比如測量躍遷光譜、馳豫時間等);結果轉換則將測量結果轉化為經(jīng)典信號輸出,獲取測量值。 外界物理量和量子系統(tǒng)的相互作用可分為橫向作用和縱向作用,其中的橫向作用會誘導能級間的躍遷,從而增加其躍遷率;縱向作用通常導致能級的平移,從而改變其躍遷頻率。通過測量躍遷率和躍遷量子測量涵蓋電磁場、重力應力、方向旋轉、溫度壓力等物理量應用范圍涉及基礎科研、空間探測、材料分析、慣性制導、地質勘測、災害預防等諸多領域,當前量子測量研究和應用的主要領域及其技術。通過對不同種類量子系統(tǒng)中獨特的量子特性進行控制與檢測,可以實現(xiàn)量子慣性導航、量子目標識別、量子重力測量、量子磁場測量、量子時間基準等領域的測量傳感,未來發(fā)展趨勢主要是高精度、小型化和芯片化。
按照對量子特性的應用,量子測量分三個層次,第一層次是基于微觀粒子能級測量;第二層次是基于量子相干性(波狀空間時間疊加態(tài))測量;第三層次是基于量子糾纏進行測量,突破經(jīng)典的理論極限。其中,前兩個層次雖然沒有充分利用量子疊加和糾纏等獨特性質,是目前技術較成熟,涉及面寬,涵蓋了大部分量子測量場景,部分領域已經(jīng)實現(xiàn)產(chǎn)品化。第一層次從 20 世紀 50 年代就逐步在原子鐘等領域開始應用。近些年隨著量子態(tài)操控技術研究的不斷深入,基于自旋量子位的測量系統(tǒng)開始成為研究熱點,通過外部物理量改變能級結構,通過探測吸收或發(fā)射頻譜對外部物理量進行測量。第二層次主要利用量子系統(tǒng)的物質波特性,通過干涉法進行外部物理量的測量,廣泛應用于量子陀螺儀、量子重力儀等領域,技術相對成熟,精度較高,但是系統(tǒng)體積通常較大,短期內(nèi)較難實現(xiàn)集成化。第三個層次條件最為嚴苛,同時也最接近量子的本質?;诹孔蛹m纏的量子測量技術研究還比較少,主要集中在量子目標識別、量子時間同步和量子衛(wèi)星導航領域。受制于量子糾纏態(tài)的制備和測量等關鍵技術瓶頸,目前主要在實驗室研究階段,距離實用化較遠。
(二)自旋量子位測量有望實現(xiàn)芯片化和集成應用
利用自旋量子位進行精密測量是量子測量領域中一個相對較新的領域。量子體系的自旋態(tài)地與磁場強度相關,磁場變化會導致自旋量子位的能級結構變化,從而改變輻射或吸收頻譜,通過對譜線的精密測量就可以完成磁場測量。另外,自旋量子位的能級結構還與溫度、應力有關,利用類似原理實現(xiàn)溫度、應力的精密測量。在自旋量子位上沿特定方向加外磁場,當自旋量子位發(fā)生旋轉或者與磁場發(fā)生相對位移時,可實現(xiàn)角速度和加速度的精密測量?;谧孕孔游坏臏y量體系的優(yōu)點在于高靈敏度和高頻譜分辨率,自旋量子位的操控和讀取對環(huán)境要求較低,便于應用。其空間分辨率遠小于光學成像的衍射極限,有望用于對微納芯片和生物組織的檢測與成像。 金剛石氮位(Nitrogen-Vacancy,NV)色心是一種近期備受關注的自旋量子位,可實現(xiàn)對多種物理量的超高靈敏度檢測,廣泛地應用于磁場、加速度、角速度、溫度、壓力的精密測量領域,具有巨大的潛力。目前金剛石色心測量系統(tǒng)已實現(xiàn)芯片化,基于金剛石色心的芯片級陀螺儀、磁力計、磁成像裝置均有報道。例如美國 MIT 今年首次報道了在硅芯片上制造了基于金剛石色心的量子傳感器,實現(xiàn)對磁場的精密測量,功能包括片上微波的產(chǎn)生和傳輸,以及來自金剛石量子缺陷的攜帶信息熒光的片上過濾和檢測,器件結構緊湊,功耗較低,在自旋量子位測量和 CMOS 技術的結合方面邁出關鍵一步。此外,金剛石色心量子測量還能實現(xiàn)納米級的空間分辨率。中科大今年首次實現(xiàn)基于金剛石色心的 50 納米空間分辨力高精度多功能量子傳感。該成果為高空間分辨力非破壞電磁場檢測和實用化的量子傳感打下了基礎,可應用于微納電磁場及光電子芯片檢測,拓寬遠場超分辨成像技術應用場景。自旋偶極耦合在密集自旋體系中產(chǎn)生壓縮,有望使測量靈敏度接近海森堡極限。
(三)量子糾纏測量處于前沿研究,實用尚有距離
量子糾纏作為量子光學乃至量子力學最為核心的課題,獲得了研究者們的廣泛關注。隨著 EPR 佯謬的提出,人們逐步發(fā)現(xiàn)并確認了量子態(tài)的非定域性。 利用量子糾纏這種非定域性可以實現(xiàn)距離的精確測量,一對糾纏光子包含信號光子和閑置光子,將信號光子發(fā)往距離未知的待測位置,閑置光子發(fā)送到位置固定的光電探測器,分別記錄光子的量子態(tài)和到達時間,并通過經(jīng)典信道進行信息交互,通過聯(lián)合測量兩地到達時間可以計算出距離。如果采用三組基點對統(tǒng)一位置進行測量,就可以在三維空間中唯一確定待測點的位置,基于此原理即可實現(xiàn)量子衛(wèi)星定位系統(tǒng)(QPS)用于高精度量子定位導航。如果距離是已知參數(shù),根據(jù)此原理還可用于測量兩地的時鐘差,進而實現(xiàn)兩地的高精度時鐘同步,此原理被應用在量子時間同步協(xié)議中。類似于量子通信的原理,如果測量過程中存在竊聽者,糾纏態(tài)會遭到破壞,測量數(shù)據(jù)將不再關聯(lián),從而達到防竊聽的目的,也提高了系統(tǒng)的安全性。 量子糾纏特性還廣泛應用于量子目標識別領域。干涉式量子雷達和量子照射雷達都將糾纏光作為光源。干涉式量子雷達使用非經(jīng)典源(糾纏態(tài)或壓縮態(tài))照射目標區(qū)域,在接收端進行經(jīng)典的干涉儀原理進行檢測,通過利用光源的量子特性,可以使雷達系統(tǒng)的距離分辨能力和角分辨能力突破經(jīng)典極限。量子照射雷達在發(fā)射信號中使用糾纏光源掃描目標區(qū)域,在接收處理中進行量子最優(yōu)聯(lián)合檢測,從而實現(xiàn)目標的高靈敏探測。
目前,基于量子糾纏的量子測量多處于理論研究階段,原理樣機的報道較少。主要原因在于高質量性能穩(wěn)定的糾纏源制備目前尚未實現(xiàn)突破,另外高性能單光子探測技術瓶頸也制約其發(fā)展,單光子探測器的靈敏度、暗計數(shù)、時間抖動等性能參數(shù)直接決定了量子測量的精度,有待進一步改進和提升。
(四)超高精度量子時鐘同步有望助力未來通信網(wǎng)
隨著 5G、物聯(lián)網(wǎng)、車聯(lián)網(wǎng)等新興技術的興起,時間同步精度的需求也日益提高。從早期的日晷,水鐘,到機械鐘,石英鐘,再到原子鐘,人類對時間的測量越來越精確。目前通信網(wǎng)絡中主要使用 GPS衛(wèi)星信號提供高精度的時間源,但衛(wèi)星信號不再能滿足未來通信網(wǎng)絡的全部需求,主要原因包括:衛(wèi)星信號不能覆蓋室內(nèi)場景,衛(wèi)星授時可靠性和安全性待提高,衛(wèi)星接收機成本高。為了滿足未來通信網(wǎng)絡同步需求,需研究超高精度時鐘源和高精度同步傳輸協(xié)議。其中,量子時鐘源可以提供不確定度優(yōu)于 1e-17 超高精度時鐘源,量子時間同步協(xié)議結合量子糾纏等技術可以為未來通信網(wǎng)絡提供高精度和高安全性的同步傳輸協(xié)議。
高精度時鐘同步在通信網(wǎng)絡中的應用
資料來源:中國信息通信研究院
量子時鐘源利用原子能級躍遷譜線的穩(wěn)定頻率作為參考,通過頻率綜合和反饋電路來鎖定晶體振蕩器的頻率,從而得到準確而穩(wěn)定的頻率輸出。根據(jù)躍遷頻率范圍分類,量子時鐘源可分為光鐘和微波鐘兩大類。目前微波鐘的不確定度最高可達到~1e-16 量級。由于時鐘源的穩(wěn)定性和精度極大程度上取決于參考譜線的線寬 Δv 與譜線中心頻率 v 的比值 Δv/v。光波頻率比微波頻率高 4~5 個數(shù)量級,并且光學頻率標準的頻率噪聲遠小于原子鐘,與原子微波鐘相比,光鐘的穩(wěn)定性、精度和位相噪聲都有數(shù)量級的改善。
由于還沒有電子系統(tǒng)能夠直接并準確地記錄原子及離子 5e14 次/秒的光學振動,需要一種有效連接光頻與射頻的頻率鏈。光學頻率梳為超高精度同步實現(xiàn)提供了新的技術手段,可將光頻率的穩(wěn)定性和精度“傳遞”到微波頻率,使得微波原子鐘具有與光鐘相同的輸出特性,提高時鐘輸出精度。光學頻率梳也是量子時鐘源的一個重要研究方向。
高精度與小型化是量子時鐘源兩大發(fā)展趨勢,高精度量子時鐘源可用于協(xié)調世界時(UTC)產(chǎn)生,小型化芯片級量子時鐘源可用作星載鐘,在衛(wèi)星導航和定位等領域發(fā)揮重要作用。
隨著高精度時間同步技術在基礎科研、導航、定位、電力、通信以及國防等方面的廣泛應用將對同步傳輸精度提出更高要求。時頻網(wǎng)絡由多時鐘源組成,即使所有的時鐘源都具有非常高的精度,由于時鐘源之間存在頻率差和初始相位差,各鐘面讀數(shù)仍不相同,需要時間同步協(xié)議對網(wǎng)絡中的時鐘源進行同步和修正。
量子時間同步協(xié)議與經(jīng)典同步協(xié)議相比,具有同步精度高、安全防竊聽、可消除色散等優(yōu)點,從而受到廣泛的關注。根據(jù)理論分析,經(jīng)典同步協(xié)議受限于經(jīng)典測量的散粒噪聲極限,而對于量子時間同步協(xié)議,其準確度將達到量子力學中的海森堡極限,比經(jīng)典時間同步極限提高√倍,其中 N 為一個脈沖中包含的平均光子數(shù),M 為脈沖數(shù)。目前經(jīng)典時間同步技術最高精度可達 100ps,目前量子時間同步協(xié)議原理性實驗中,時間同步精度有望進入 ps 量級。
量子時間同步系統(tǒng)可以把量子時間同步協(xié)議與量子保密通訊相結合,開發(fā)出具備保密功能的量子時間同步協(xié)議,從而有效對付竊密者的偷聽行為。通過通道間的頻率糾纏特性還可以消除傳播路徑中介質色散效應對時鐘同步精度的不利影響。目前,遠距離量子時間同步協(xié)議的研究工作尚處于原理探索研究階段,關于系統(tǒng)實驗和應用的報道較少。量子糾纏及壓縮態(tài)的光子的制備成為制約該領域發(fā)展的重要瓶頸,距離實用化仍較遠。量子時鐘源提供了超高精度的時間和頻率基準源,量子時間同步協(xié)議提供了一種高精度、安全防竊聽的同步信息傳輸機制,二者結合有望能夠滿足未來通信網(wǎng)絡時間基準需求。
(五)量子測量產(chǎn)業(yè)初步發(fā)展,仍需多方助力合作
量子測量技術涉及軍事、民生、科研諸多領域,各國競相布局
9月20日,谷歌發(fā)布論文稱已經(jīng)利用一臺53量子比特的量子計算機實現(xiàn)了傳統(tǒng)架構計算機無法完成的任務,即全球最強大的超算Summit要花1萬年的計算實驗中,谷歌的量子計算機只用了3分20秒。此舉證實了量子計算機性能超越經(jīng)典計算機,而谷歌研究人員宣布,谷歌已經(jīng)實現(xiàn)“量子霸權”。
此處并非傳統(tǒng)意義上的霸權,而是指量子計算機能夠被證實擁有超越傳統(tǒng)計算機性能的絕對優(yōu)勢,則實現(xiàn)了“量子霸權”。誰先宣布了實現(xiàn)量子霸權,誰將會在量子計算長跑中占領先機。盡管相關論文在美國國家航空航天局(NASA)網(wǎng)站上不久后被刪除送與評審,但是關于量子計算的討論又開始被推上熱門話題。
對于眾多外行來說,量子計算仍是個遙遠的新概念。實際上,早在1981年量子計算機的概念就被提出,衍生于量子通信。量子計算是物理學與信息科學的交叉學科,被稱作是經(jīng)典物理學天空的“烏云”。經(jīng)過多年發(fā)展,量子計算已經(jīng)不再只停留在理論研究階段,2007年加拿大D-Wave公司實現(xiàn)歷史上第一臺商用量子計算機,率先推動量子計算機商業(yè)化,隨后谷歌、IBM、微軟等科技巨頭也開始布局。
全球著名咨詢公司波士頓集團(BCG)曾發(fā)布一份報告稱,量子計算機將可能改變密碼學和化學(以及材料科學、農(nóng)業(yè)和制藥)等領域的游戲規(guī)則,更不用說人工智能和機器學習,此外物流、制造業(yè)、金融和能源,都將因此而改變。盡管谷歌已經(jīng)證實量子計算機可以解決經(jīng)典計算機無法解決的問題,但是谷歌的系統(tǒng)只能進行一次單一的、技術性很強的計算,真正使用量子計算機解決實際問題還需要數(shù)年時間。
經(jīng)典計算機依賴二進制,信息量的基本度量單位是比特,每一位可以表示為0或1。而量子計算機使用的是量子比特,一個量子比特不僅可以表示為0或1,還能表示0與1的疊加態(tài)(量子疊加),也就是說,n個“比特”只能表示2n個狀態(tài)中的一個,n個“量子比特”卻能同時表示2n個狀態(tài)。理想狀態(tài)下,50個量子比特一次可以進行2的50次方次運算。因此,量子系統(tǒng)具有比二進制系統(tǒng)更快更高效的潛力,這種特性讓量子計算的工作速度呈雙指數(shù)倍增長,算力優(yōu)勢達到恐怖級別,將實現(xiàn)對傳統(tǒng)計算機的碾壓式跨越。
從上個世紀80年代開始,一場關于建造功能最強大、量子比特最多的量子計算機研發(fā)競賽就已經(jīng)拉開序幕。1988年IBM、牛津、伯克利、斯坦福和麻省理工學院的研究人員制作了一個2比特的計算系統(tǒng);2017年美國IBM宣布成功研制一款50量子位處理器原型,業(yè)內(nèi)專家稱“量子霸權”進入爭奪關鍵期;2018年初英特爾推出了49量子比特超導量子測試芯片,名為“Tangle Lake”,過后兩個月不到,谷歌公司發(fā)布72量子比特計算系統(tǒng)“Bristlecone”,同年8月,從事量子計算研究的新興公司Rigetti預計2019年將會發(fā)布一個容量為128比特的計算系統(tǒng),這一實現(xiàn)將是量子領域的重大突破,標志著距離實現(xiàn)量子優(yōu)勢(Quantum Advantage )和量子霸權(Quantum Supremacy)這兩個目標更近一步。
過去20年量子計算的爆炸式發(fā)展
數(shù)據(jù)來源:公開資料整理
摩爾定律瀕臨上限量子計算成為重要突破點
傳統(tǒng)計算機遵循摩爾定律,即每隔18個月,集成電路上可容納的元器件數(shù)目約增加一倍,計算機的計算性能也增加一倍。當前集成電路在材料和制程工藝方面已經(jīng)逼近瓶頸,2018年臺積電公司推出的7納米硅基芯片制程理論上已達到物理極限,要想繼續(xù)突破除了改用碳元素制作芯片,量子計算則是另外一種重要的選擇方式。
2002-2020年全球芯片制程(單位:納米)
數(shù)據(jù)來源:公開資料整理
歐美日韓積極布局
當前,量子力學已經(jīng)成為世界的科技研究一大熱點。全球主要國家高度關注量子信息技術發(fā)展,紛紛加大政策和資金支持,力爭搶占新興信息技術制高點。
美國是量子計算布局里最早也最積極的玩家之一,2018年美國通過《國家量子倡議法案》,在此之前,美國商務部的國家標準與技術研究院(NIST),以及非營利組織SRI International簽署了合作研發(fā)協(xié)議。通過財團的力量,幫助美國推動量子計算行業(yè)的發(fā)展。2019年,美國政府發(fā)布未來工業(yè)發(fā)展計劃,將量子信息技術等四大關鍵技術視為未來科技和產(chǎn)業(yè)發(fā)展的“基礎設施”,認為發(fā)展量子信息科學能夠保持美國在全球產(chǎn)業(yè)變革中的主導地位。政策上的持續(xù)加碼,讓美國在全球量子計算研發(fā)上占據(jù)主導地位。
此外,英國、德國、荷蘭等國也相繼出臺了針對量子計算、量子通信等量子領域的發(fā)展規(guī)劃;日本、韓國起步較晚,但是憑借著本身的技術積累,在量子計算領域的發(fā)展也來勢洶洶。
我國在推動量子技術方面也不甘落后,先后啟動“自然科學基金”、“863”計劃和重大專項,2016年多個“十三五”規(guī)劃文件中提及量子計算的戰(zhàn)略地位,支持量子計算的技術研發(fā)和產(chǎn)業(yè)化落地。2019年9月,濟南市政府正式批復了《濟南市人民政府關于加快建設量子信息大科學中心的若干政策措施》,這是我國城市出臺的首個量子信息產(chǎn)業(yè)專項政策。文件提出2019-2021年,每年安排經(jīng)費600萬元,重點支持量子信息青年科研人員,強化量子科技與人才儲備;在建設高水平量子研發(fā)機構方面,濟南市政府最高支持1億元。
隨著量子計算技術不斷發(fā)展,一個由硬件和軟件架構師及開發(fā)人員、貢獻者、投資者、潛在用戶和附屬參與者組成的量子計算生態(tài)系統(tǒng)雛形顯現(xiàn)。總的來說,目前量子信息產(chǎn)業(yè)的主要參與者有五大類:端對端提供商、硬件和系統(tǒng)參與者、軟件和服務參與者、專家級參與者。
其中,端對端集成公司仍然是技術生態(tài)系統(tǒng)的中心。它們往往是大型科技公司和資金充足的初創(chuàng)公司,前者中如IBM一直是量子計算的先驅,并一直走在產(chǎn)業(yè)發(fā)展最前沿;后者如Rigetti是初創(chuàng)公司中領頭羊。
基礎研究方面,谷歌、IBM、英特爾等科技巨頭積極展開全球合作,與耶魯大學、麻省理工學院、加州大學等科研機構聯(lián)合攻關共性技術,主要集中在超導量子計算領域,并且這些企業(yè)已經(jīng)在超導量子計算取得了一定的成果。
超導量子計算是目前進展最好最快的一種固體量子計算實現(xiàn)方法。超導陣營的所有主要參與者都已讓軟件和服務公司以及首選合作伙伴能夠從外部訪問他們的小型芯片,有的已經(jīng)向整個社區(qū)開放了性能較差的版本和模擬器。未來三到四年內(nèi)超導量子元位可能領先于其他技術。
五、全球量子計算市場規(guī)模預測
(一)、全球量子計算市場規(guī)模預測
量子計算的出現(xiàn),為經(jīng)典計算機算力的躍遷帶來可能,但是目前量子計算技術仍處于初級階段,距離解決工程規(guī)模的問題可能還需5-7年。據(jù)IDC預計,2027年,全球量子計算市場規(guī)模將達到107億美元,較2017年相比,10年內(nèi)增長超過40倍;波士頓咨詢發(fā)布的報告預測,在不考慮量子糾錯算法的進展情況下,保守估計到2035年全球量子計算應用市場規(guī)模將達到近20億美元,隨后暴漲到2050年的2600多億美元;若量子計算技術迭代速度超出預期,樂觀估計2035年市場規(guī)??赏黄?00億美元,2050年則有望飆升至2950億美元。
2035-2050年全球量子計算市場規(guī)模預測(單位:億美元)
數(shù)據(jù)來源:公開資料整理
在一些傳統(tǒng)行業(yè),以現(xiàn)有人類科技的計算能力,所消耗的時間和成本巨大,如生物制藥、化工、能源等;還有另一些本身對計算能力要求較高達到科技行業(yè),也將會是量子計算實現(xiàn)商用的領域。例如:搜索、數(shù)字安全。人工智能、機器學習等等。
當前量子計算元年無法預測,但是可以預見的是,在所有商業(yè)應用領域不存在偶然爆發(fā)的情況下,前5年的發(fā)展將非常平穩(wěn)。生物醫(yī)藥和化工行業(yè)作為龐大的行業(yè),在量子元年應用市場規(guī)模將占據(jù)大部分份額,隨著時間推移,搜索、機器學習和數(shù)字安全三個行業(yè)憑借本身對計算的直接需求,將以量子計算作為時代跳板,市場規(guī)模占比逐漸擴大,成為量子計算應用領域的主流。
量子元年-5年全球量子計算市場規(guī)模結構(單位:%)
數(shù)據(jù)來源:公開資料整理
近幾年全球范圍內(nèi)在量子計算物理驗證取得的進展是有目共睹的,并且也導致了越來越高的市場興趣和投資活動,但是在實際解決問題方面,國際公認短期內(nèi)無法實現(xiàn)通用量子計算機。根據(jù)賽迪智庫電子信息研究所9月發(fā)布的《量子計算發(fā)展白皮書(2019年)》,量子計算發(fā)展預計分為近期、中期與遠期三個階段。
近期的量子霸權僅為技術研發(fā)初期的一種特有概念形式,距離真正的量子計算機仍有很大距離;中期將利用可控的人造量子系統(tǒng)實現(xiàn)對復雜物理過程的高效量子模擬;后期通用量子計算機將對大數(shù)據(jù)。人工智能。密碼破譯等領域產(chǎn)生顛覆性影響,并且量子計算機與經(jīng)典計算機將實現(xiàn)功能互補。
BCG預測量子計算在25年內(nèi)將經(jīng)歷三個發(fā)展階段,最終走向成熟,該預測比前文所述的原計劃要晚十年。其中,第一個階段是2018到2028年,工程師們將研發(fā)出可用于低復雜程度的量子模擬問題的非通用量子計算機;
第二個階段是2028到2039年,邏輯量子比特數(shù)量將擴展到50多個,并實現(xiàn)所謂的“量子霸權”,更快速地執(zhí)行特定算法的應用程序,主要包括分子模擬、研發(fā)和軟件開發(fā)等,創(chuàng)造巨大的市場潛力;
第三階段為2031年至2042年,量子計算機將在高級模擬、搜索和優(yōu)化的商業(yè)應用取得比經(jīng)典方法更有顯著優(yōu)勢的規(guī)模。由于摩爾定律的擴展,以及量子計算在某些應用中超過二進制計算的閾值,第二階段和第三階段量子計算機之間有相當大的重疊。作為一個總體軌跡,BGC預測2030年左右將出現(xiàn)快速增長。
(二)、我國量子通信行業(yè)發(fā)展前景分析
1、未來我國量子通信行業(yè)市場規(guī)模將超800億
我國在量子科學方面起步雖不是最早,但卻發(fā)展最快。隨著“量子衛(wèi)星”“京滬干線”等重大項目的建設,我國量子通信技術已躋身全球領先地位。如今,奧、意、俄、日、加等國的科研機構正在或試圖與我國合作,包括聯(lián)合制訂量子通信產(chǎn)業(yè)的國際標準。
止至2017年我國量子通信行業(yè)市場規(guī)模達到約180億元。初步測算2018年我國量子通信行業(yè)市場規(guī)模將達到320億元左右。預測2019年我國量子通信行業(yè)市場規(guī)模將達425億元,并預測在2023年我國量子通信行業(yè)市場規(guī)模將超800億元,達到805億元左右,2019-2023年均復合增長率約為17.31%。
2017-2023年我國量子通信行業(yè)市場規(guī)模預測
數(shù)據(jù)來源:公開資料整理
2、我國量子通信行業(yè)發(fā)展前景分析
——政策加碼及推進應用創(chuàng)新
2016年12月,國務院印發(fā)《“十三五”國家戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展規(guī)劃》,把量子通信提升至國家戰(zhàn)略高度,將其作為重要戰(zhàn)略新興產(chǎn)業(yè)方向和體現(xiàn)國家戰(zhàn)略意圖的重大科技項目。
2017年5月,科技部、教育部、科學院、國家自然科學基金委員會聯(lián)合發(fā)布《關于印發(fā)“十三五”國家基礎研究專項規(guī)劃的通知》,提出要面向多用戶聯(lián)網(wǎng)的量子通信關鍵技術和成套設備,率先突破量子保密通信技術,建設超遠距離光纖量子通信網(wǎng),開展星地量子通信系統(tǒng)硏究,構建完整的空地一體廣域量子通信網(wǎng)絡體系,與經(jīng)典通信網(wǎng)絡實現(xiàn)無縫鏈接。以奠定我國在新一輪信息技術國際競爭中的科技基礎和優(yōu)勢方向。
2017年11月,國家發(fā)改委印發(fā)《關于組織實施2018年新一代信息基礎設施建設工程的通知》,提出以量子保密通信“京滬干線”和“墨子號”量子科學實驗衛(wèi)星為基礎,面向國家戰(zhàn)略需求和可持續(xù)運營要求,在京津冀、長江經(jīng)濟帶等重點區(qū)域建設量子保密通信骨干網(wǎng)及城域網(wǎng),并在若干地區(qū)建設衛(wèi)星地面站,形成量子保密通信骨干環(huán)網(wǎng)。同時,構建量子保密通信網(wǎng)絡運營服務體系,進一步推進其在信息通信領域及政務、金融、電力等行業(yè)的應用。
2018年3月,政府工作報告肯定量子通信發(fā)展成果,將量子通信與載人航天、深海探測、大飛機并列為重大創(chuàng)新成果,認可量子通信行業(yè)地位和發(fā)展成果。
2、量子通信獨特的優(yōu)越性
量子通信是一門交叉學科,是通信電子科學和量子力學相結合的新興產(chǎn)物,這種通信技術可以完成傳統(tǒng)信息傳輸所不能完成的信息處理技術任務,與傳統(tǒng)通信技術和通信方式相比,具有獨特的優(yōu)越性。量子通信是利用量子的不可復制性以及測量的隨機性進行信息傳遞的一種新型通訊方式,與經(jīng)典通信相比較,量子通信采用的是“一次一密”的加密方式,是目前唯一被證明無條件安全的通信方式。此外,它還具有較強抗干擾能力、傳輸能力、高傳輸效率以及容量大、速度快等優(yōu)點,理論上可以傳輸無限量的消息。由于其多方面突出的優(yōu)勢,這種量子通信技術得以被廣泛應用于軍事、國防等領域,在信息檢測、信息傳送以及信息對抗等方面占據(jù)優(yōu)勢,性能和用途都領先于其他通信技術。
3、量子通信技術的不斷突破
2018年以來,我國在量子通信技術領域不斷突破新記錄。清華大學的研究團隊首次實現(xiàn)了25個量子接口之間的量子糾纏,打破了先前加州理工學院研究組4個量子接口之間糾纏的紀錄。中國科技大學的研究團隊在國際上首次實現(xiàn)18個光量子比特的糾纏,刷新了所有物理體系中最大糾纏態(tài)制備的世界紀錄。中國科技大學的研究人員還在量子通信研究中取得新進展,創(chuàng)造密集編碼量子通信信道容量新紀錄。
2018年1月,中國和奧地利之間首次實現(xiàn)距離達7600公里的洲際量子密鑰分發(fā),并利用共享密鑰實現(xiàn)加密數(shù)據(jù)傳輸和視頻通信。標志著“墨子號”已具備實現(xiàn)洲際量子保密通信的能力,為未來構建全球化量子通信網(wǎng)絡奠定了堅實基礎。
2018年7月,中國科學家一舉把量子密集編碼的信道容量紀錄提升到了2.09,超過了兩維糾纏能達到的理論極限,創(chuàng)造了當前國際最高水平。
隨著“量子衛(wèi)星”、“京滬干線”等重大項目的建設,我國量子通信技術已躋身全球領先地位,率先實現(xiàn)了量子傳送、加密和分發(fā),理論實力、技術基礎和產(chǎn)業(yè)應用世界領先。
4、應用前景廣闊
其一,量子通信技術在軍事領域通信安全方面會有較大的發(fā)展空間。量子通信技術憑借其絕對通信安全性質以及傳送信息的快速性、準確性所決定的,在今后的一段時期內(nèi)或將被大范圍推廣及應用到軍事技術中,以有力的保證軍事安全及國家信息安全。
其二,量子信息是國家儲存重要信息的安全載體。重要信息的儲存不僅需要安全性能,還需要較大的存儲空間,量子信息存儲可以滿足這一要求和標準,可以將國家的重要信息及文件存儲到量子信息庫中,并以獨有的密鑰,保證其安全性。
第三,量子信息與網(wǎng)絡相結合,成為新型的網(wǎng)絡構架,特別是量子通信技術的大容量信息傳送和高效快速的性能,非常符合我國當下大數(shù)據(jù)的時代特征,可用于涉及秘密數(shù)據(jù)或票據(jù)的金融、電信、電力、電子信息等領域和部門,應用價值和前景非常廣闊。
本文大部分內(nèi)容來源:中國信息通信研究院
相關報告:智研咨詢發(fā)布的《2020-2026年中國軟件和信息技術服務業(yè)行業(yè)市場消費調查及投資前景預測報告》



